| | PREJECTED & groundwater 12 12 | |-------------|--| | Facility | | | Location | : 126 East Lincoln Ave., Rahway NJ | | EPA Regi | | | Person(s |) in Charge of the Facility: | | | | | | | | Name of | Reviewer: El Haven Date: 7/1/88 | | General : | Description of the Facility: | | contami: | mple: landfill, surface impoundment, pile, container; f hazardous substances; location of the facility; nation route of major concern; types of information for rating; agency action, etc.) | | | | | | | | | ı | | | | | | | | | | | Scores: | S _M = 43-23 (S _{SW} = 73.47 S _{SW} = 13.99 S _a = 0) | | | Spe = | | | SDC = | | - | · · · · · · · · · · · · · · · · · · · | HRS COVER SHEET | | · | ROUND | WATE | RR | OUT | E WORK | SHEET | | | · | |----------|--|--------------------------|------------------------|------------------------------|---------------------|-------------------|-----------------|---------|---|-------------------| | | Rating Factor | | | | d Valu
3 One) | | Multi-
plier | Score | Max.
Score | Ref.
(Section) | | 1 | Observed Releas | • | 0 | | . (| i §) | 1 | 45 | 45 | 3.1 | | | If observed releas | | | | | | • | | | | | 2 | Route Characteris Depth to Aquifer Concern | | 0 | 1 2 | 3 | | 2 | | 6 | 3.2 | | | Net Precipitation
Permeability of th
Unsaturated Zon | | 0 | 1 2 | 3 | | 1 | | 3 | | | | Physical State | | 0 | 1 2 | 3 | | 1 | | 3 | | | _ | | To | otal Rout | e Cha | racteri | stics Score | | | 15 | - | | <u> </u> | Containment | | 0 | 1 2 | 3 | | 1 | | 3 | 3.3 | | 4 | Waste Characteris
Toxicity/Persister
Hazardous Waste
Quantity | | - | 3 6 1 2 | 9 12
3 4 | 15(18)
5 6 7 8 | 1 | 18 | 18
8 | 3.4 | | | | | · | | | | | | | | | | | To | otal Waste | e Cha | racteri | stics Score | | 25 | 26 | | | <u>s</u> | Targets Ground Water Use Distance to Neare Well/Population Served | - | 0
0
12 1
24(3 | 1 (2)
4 6
6 18
0 32 | 8 10
20
35 40 | | 3 | 6
30 | 9 | 3.5 | | | | | | | | · · | · | | ·
———————————————————————————————————— | | | 7 | | | | i Tarq | ets Sc | ore | | 36 | 49 | | | | | multiply 1
nultiply 2 | | × 5 | × 5 | | | 40,500 | 57.330 | | | 7 | Divide line 6 by | y 57,330 and | multiply | by 1 | 00 | Sgw = 78 | 0.64 | | | | page 2 | | | SURFA | CE WA | TE | ROUTE | WORK | SH | EET | | | |----------|--|--------------------------------|-----------------------------|----------|--------------------------|------------|--------------|------------|---------------|------------------| | | Rating Factor | 9 | | | d Value
One) | | ulti-
ler | Score | Max.
Score | Ref.
(Section | | 0 | Observed Release | • | 0 | | (15) | | | 45 | 45 | 4.1 | | : | If observed releas | se is given a
se is given a | value of 4 | 15, p | roceed to line | 4 . | | | - | | | 2 | Route Characteris | tics | | | | - | | | | | | | Facility Slope and
Terrain | Intervening | 0 1 | 2 | 3 | . 1 | | | 3 | 4.2 | | | 1-yr. 24-hr. Rainfai | | 0 1 | 2 | 3 | 1 | | | 3 | | | | Distance to Neare Water | st Surface | 0 1 | 2 | 3 | . 2 | | | 6 | | | | Physical State | : | 0 1 | 2 | 3 | 1 | | | 3 | | | | | То | ital Route (| Char | cteristics Sc | ore | | | 15 | | | 3 | Containment | | 0 1 | 2 | 3 | 1 | | | 3 | 4.3 | | | Waste Characterist
Toxicity/Persistend
Hazardous Waste
Quantity | | 0 3 0 1 | 6 : | 9 12 15 (B)
3 4 5 6 (| ^ | | ig
7 | 18
8 | 4.4 | | | | Tot | al Waste C | hers | cteristics Sci | ore | T | 25 | 26 | | | | Targets
Surface Water Use | | 0 1 (| <u> </u> | | | • | | _ | 4.5 | | | Distance to a Sensi | itive | 0 | 2 3 | | 3 2 | | 6 | 9
8 | | | F | Population Served/I
to Water Intake
Downstream | Distance |) 0 4
12 16 1
24 30 3 | 8 20 | 10 | 1 | | 0 | 40 | | | - | | | Total T | nge | s Score | | Τ | 8 | 55 | | | _ | line 1 is 45, m | iultiply 1
itiply 2 x | x 4 x | 回
4 × | 5 | | 9 | 000 | 64,350 | | | <u> </u> | livide line 6 by | 64.350 and i | Multiply by | 100 | \$ | 13.99 | - | <u>+</u> _ | | | page 3 | AIR ROUTE WORK SHEET | | | | | | | |----------------------|-----------------------------------|--|-----------------|-------|-----------------|-------------------| | | Rating Factor | Assigned Value
(Circle Orie) | Multi-
plier | Score | Max.
Score | Ref.
(Section) | | 1 | Observed Release | (0) 45 | 1 | 0 | 45 | 5.1 | | | Date and Location | | | | | · | | | Sampling Protocol | | | | | | | | | e S = 0. Enter on line 3 .
then proceed to line 2 . | | | | , | | 2 | Waste Characteris Reactivity and | 0 1 2 3 | 1 | | 3 | 5.2 | | | Incompatibility | | | | | | | | Toxicity Hazardous Waste Quantity | 0 1 2 3 0 1 2 3 4 5 6 7 | 8 1 | | 9 .
8 | · | | | | Total Waste Characteristics Score | | | 20 | | | | | 1012 11213 011213101131131 00010 | | _ | | | | 3 | Targets | | | | | 5.3 | | | Population Within 4-Mile Radius | 0 9 12 15 18
21 24 27 30 | , 1 | | 30 | • | | | Distance to Sensit | | 2 | | 6 | | | | Environment
Land Use | 0 1 2 3 | 1 | | 3 | 1 | | | • | | | | | | | | | | | | | | | | | Total Targets Score | | | 39 | | | 4 | Multiply 1 x |] × 3 | | 0 | 35,100 | | | 3 | Divide line 4 b | / 35,100 and multiply by 100 Sa = (|) | | • | | | | s | s ² | |--|-------|-----------------------| | Groundwater Route Score (Sgw) | 73.47 | 5397.84 | | Surface Water Route Score (S _{SW}) | 13.99 | 195-72 | | Air Route Score (Sa) | 0 | 0 | | $s_{gw}^2 + s_{sw}^2 + s_a^2$ | | 5593.56 | | $\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2}$ | | 74.79 | | $\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2} / 1.73$ | | S _M = 43.2 | Worksheet for computing $s_{\mathbf{M}}$